Consistency as a Service
Auditing Cloud Consistency

ABSTRACT:

Cloud storage services have become commercially popular due to their overwhelming advantages. To provide ubiquitous always-on access, a cloud service provider (CSP) maintains multiple replicas for each piece of data on geographically distributed servers. A key problem of using the replication technique in clouds is that it is very expensive to achieve strong consistency on a worldwide scale. In this paper, we first present a novel consistency as a service (CaaS) model, which consists of a large data cloud and multiple small audit clouds. In the CaaS model, a data cloud is maintained by a CSP, and a group of users that constitute an audit cloud can verify whether the data cloud provides the promised level of consistency or not. We propose a two-level auditing architecture, which only requires a loosely synchronized clock in the audit cloud. Then, we design algorithms to quantify the severity of violations with two metrics: the commonality of violations, and the staleness of the value of a read. Finally, we devise a heuristic auditing strategy (HAS) to reveal as many violations as possible. Extensive experiments were performed using a combination of simulations and real cloud deployments to validate HAS.

Existing System:

Although the existing schemes aim at providing integrity verification for different data storage systems, the problem of supporting both public audit ability and data dynamics has not been fully addressed. How to achieve a secure and efficient design to seamlessly integrate these two important components for data storage service remains an open challenging task in Cloud Computing.
DISADVANTAGES OF EXISTING SYSTEM:

Although the infrastructures under the cloud are much more powerful and reliable than personal computing devices, they are still facing the broad range of both internal and external threats for data integrity.

Second, there do exist various motivations for CSP to behave unfaithfully toward the cloud users regarding their outsourced data status. In particular, simply downloading all the data for its integrity verification is not a practical solution due to the expensiveness in I/O and transmission cost across the network. Besides, it is often insufficient to detect the data corruption only when accessing the data, as it does not give users correctness assurance for those unaccessed data and might be too late to recover the data loss or damage. Encryption does not completely solve the problem of protecting data privacy against third-party auditing but just reduces it to the complex key management domain. Unauthorized data leakage still remains possible due to the potential exposure of decryption keys.

Proposed System:

we propose a _heuristic auditing strategy_ (HAS) which adds appropriate reads to reveal as many violations as possible. Our key contributions are as follows: 1) We present a novel consistency as a service (CaaS) model, where a group of users that constitute an audit cloud can verify whether the data cloud provides the promised level of consistency or not. 2) We propose a two-level auditing structure, which only requires a loosely synchronized clock for ordering operations in an audit cloud. 3) We design algorithms to quantify the severity of violations with different metrics. 4) We devise a heuristic auditing strategy (HAS) to reveal as many
violations as possible. Extensive experiments were performed using a combination of simulations and real cloud deployments to validate HAS.

Advantage:

1) As a rising subject, cloud consistency is playing an increasingly important role in the decision support activity of every walk of life.
2) Get Efficient Item set result based on the caas.

System Architecture:
System Requirements:

Hardware Requirements:

- System: Pentium IV 2.4 GHz.
- Hard Disk: 40 GB.
- Floppy Drive: 1.44 Mb.
- Monitor: 15 VGA Colour.
- Mouse: Logitech.
- Ram: 512 Mb.

Software Requirements:

- Coding Language: C#.net, Asp.net
- IDE: VisualStudio 2010